Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Task</th>
<th>No of Hours Required</th>
<th>Actual hours Taken, Reason for the deviation</th>
<th>Teaching Method BB/PP/Video</th>
<th>Book</th>
<th>Dependencie(s) (page no.)</th>
<th>Remarks</th>
<th>No of Students Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT I (9 hours) OPERATING SYSTEMS OVERVIEW</td>
<td>Computer System Overview-Basic Elements</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction Execution, Interrupts</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R1</td>
<td>11,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory Hierarchy, Cache Memory</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R1</td>
<td>24,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Memory Access, Multiprocessor and Multicore Organization</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R1</td>
<td>31,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating system overview-objectives and functions, Evolution of Operating System</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R1</td>
<td>48,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer System Organization-Operating System Structure and Operations</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>7,19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Task</th>
<th>No of Hours Required</th>
<th>No of Students Present</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT II</td>
<td>Processes-Process Concept, Process Scheduling.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations on Processes, Interprocess Communication</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Calls	1	BB	T	62
System Programs	1	BB	T	74
OS Generation and System Boot.	1	BB	T	91,92
Tutorial(Test)	1	Cache Memory, Interrupts		

<table>
<thead>
<tr>
<th>No of Students Present</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Students Present</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Method BB/PP/Video</th>
<th>Dependencies (page no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>105,110</td>
</tr>
<tr>
<td>BB</td>
<td>115,122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual hours Taken, Reason for the deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT II</td>
<td>Processes-Process Concept, Process Scheduling.</td>
</tr>
<tr>
<td></td>
<td>Operations on Processes, Interprocess Communication</td>
</tr>
</tbody>
</table>
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Week</th>
<th>Type</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread-Multicore Programming, Multithreading Models</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Windows 7 - Thread and SMP Management</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Process Synchronization</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Critical Section Problem, Mutex Locks</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Semaphores, Monitors</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>CPU Scheduling</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Deadlocks</td>
<td>1</td>
<td>BB</td>
<td></td>
</tr>
</tbody>
</table>

Assignment-2

Assignment-2

Assignment-2
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Task</th>
<th>No of Hours Required</th>
<th>Actual hours Taken, Reason for the deviation</th>
<th>Teaching Method</th>
<th>Book</th>
<th>Dependencies (page no.)</th>
<th>Remarks</th>
<th>No of Students Present</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU Scheduling, Semaphores</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit III (9 Hours)</td>
<td>STORAGEMANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main Memory-Contiguous Memory Allocation</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>351</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segmentation</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paging, 32 and 64 bit architecture Examples;</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>366</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtual Memory</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>397</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demand Paging</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>401</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Task</th>
<th>No of Hours Required</th>
<th>Actual hours Taken, Reason for the deviation</th>
<th>Teaching Method BB/PP/Video</th>
<th>Book</th>
<th>Dependencies (page no.)</th>
<th>Remarks</th>
<th>No of Students Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Replacement</td>
<td>1</td>
<td></td>
<td>BB T</td>
<td>409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation</td>
<td>1</td>
<td></td>
<td>BB T</td>
<td>421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrashing; Allocating Kernel Memory</td>
<td>1</td>
<td></td>
<td>BB T</td>
<td>425,436</td>
<td>Assignment-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS Examples</td>
<td>1</td>
<td></td>
<td>BB T</td>
<td>445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial(Test)</td>
<td>1</td>
<td></td>
<td>BB T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paging, Segmentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit IV(9 Hours) I/O SYSTEMS							
Mass Storage Structure-Overview	1		BB T	467			
Disk Scheduling and Management	1		BB T	472,478			
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
<th>Type</th>
<th>Duration</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>File System Storage-File Concepts</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>503</td>
</tr>
<tr>
<td>Directory and Disk Structure,</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>515,528</td>
</tr>
<tr>
<td>Sharing and Protection;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File System Implementation- File</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>543</td>
</tr>
<tr>
<td>System Structure,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directory Structure</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>515</td>
</tr>
<tr>
<td>Allocation Methods,</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>553</td>
</tr>
<tr>
<td>Free Space Management</td>
<td>1</td>
<td>BB</td>
<td>T</td>
<td>562</td>
</tr>
<tr>
<td>I/O Systems.</td>
<td></td>
<td></td>
<td></td>
<td>587</td>
</tr>
<tr>
<td>Tutorial(Test)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File System Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan & Schedule (Sub.Code: CS6401 – Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Task</th>
<th>No of Hours Required</th>
<th>Actual hours Taken, Reason for the deviation</th>
<th>Teaching Method BB/PP/Video</th>
<th>Book</th>
<th>Dependencies (page no.)</th>
<th>Remarks</th>
<th>No of Students Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit V (9 hours)</td>
<td>CASE STUDY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linux System- Basic Concepts</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>T</td>
<td>781</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Administration</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirements for Linux System Administrator</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting up a LINUX Multifunction Server</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>8</td>
<td>Assignment-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adding a Relational Database: MySQL</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain Name System</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting Up Local Network Services</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtualization- Basic Concepts</td>
<td>1</td>
<td></td>
<td>BB</td>
<td>R6</td>
<td>194</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan & Schedule (Sub.Code: CS6401 ~ Sub Name: OPERATING SYSTEMS)

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>Session No.</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Up Xen, VMware on Linux Host and Adding Guest OS.</td>
<td>1</td>
<td>BB, R6, 199</td>
</tr>
<tr>
<td>Tutorial (Test)</td>
<td>1</td>
<td>Domain Name System, Virtualization</td>
</tr>
</tbody>
</table>

(Note: BB = Black Board, PP = Power Point Presentation, VIDEO = Video Lecture)

Text Book:
Lesson Plan & Schedule (Sub.Code: CS6401 - Sub Name: OPERATING SYSTEMS)

Reference Book:
5. http://nptel.ac.in/.
6. LINUX SYSTEM ADMINISTRATION Tom Adelstein and Bill Lubanovi
1. **What is an Operating system?**
 An operating system is a program that manages the computer hardware. It also provides a basis for application programs and act as an intermediary between a user of a computer and the computer hardware. It controls and coordinates the use of the hardware among the various application programs for the various users.

2. **List the services provided by an Operating System?**
 - Program execution
 - I/O Operation
 - File-System manipulation
 - Communications
 - Error detection

3. **What is meant by Mainframe Systems?**
 Mainframe systems are the first computers developed to tackle many commercial and scientific applications. These systems are developed from the batch systems and then multiprogramming system and finally time sharing systems.

4. **What is meant by Batch Systems?**
 Operators batched together jobs with similar needs and ran through the computer as a group. The operators would sort programs into batches with similar requirements and as system become available, it would run each batch.

5. **What is meant by Multiprogramming?**
 Several users simultaneously compete for system resources (i.e) the job currently waiting for I/O will yield the CPU to another job which is ready to do calculations, if another job is waiting. Thus it increases CPU utilization and system throughput.

6. **What is meant by Time-sharing Systems?**
 Time Sharing is a logical extension of multiprogramming. Here, CPU executes multiple jobs by switching among them, but the switches occur so frequently that the users can interact with each program while it is running.

7. **What are Multiprocessor Systems & give their advantages?**
 Multiprocessor systems also known as parallel systems or tightly coupled systems are systems that have more than one processor in close communication, sharing the computer bus, the clock and sometimes memory & peripheral devices. Their main advantages are,
 - Increased throughput
• Economy of scale
• Increased reliability

8. **What are the different types of Multiprocessing?**
 - **Symmetric multiprocessing (SMP):** In SMP each processor runs an identical copy of the OS & these copies communicate with one another as needed. All processors are peers. Examples are Windows NT, Solaris, Digital UNIX, and OS/2 & Linux.
 - **Asymmetric multiprocessing:** Each processor is assigned a specific task. A master processor controls the system; the other processors look to the master for instructions or predefined tasks. It defines a master-slave relationship. Example: SunOS Version 4.

9. **What is meant by clustered system?**
 Clustered systems are collection of multiple CPUs to accomplish computational work. Those systems share storage and are closely linked via LAN networking.

10. **What are the types of clustering?**
 - Asymmetric Clustering
 - Symmetric Clustering & Clustering over a WAN

11. **What are the advantages of distributed systems?**
 - Resource sharing
 - Load balancing
 - Reliability
 - Communication link easy

12. **What are the applications of real-time systems?**
 - Controlling the machines
 - Instruments
 - Industrial process
 - Landing & tasking off aero planes
 - Real time simulations
 - Military applications.

13. **What are Operating Services?**
 Normally, an operating system provides certain services to programs and to the users of those programs. Some of them are:
 - Program Execution.
 - I/O operations
 - File-system manipulation
 - Communications
 - Error Detection
14. What is System Programs?
System programs provide a convenient environment for program development and execution. Some of these programs are user interfaces to system calls and others are more complex. Some of them are:
- File Management
- Status Information
- File modification
- Programming Language support Program loading,
- Execution and communication.

15. What are the five major categories of System Calls?
- Process Control
- File-management
- Device-management
- Information maintenance
- Communications

16. What is the use of Fork and Exec System Calls?
Fork is a System calls by which a new process is created. Exec is also a System call, which is used after a fork by one of the two processes to replace the process memory space with a new program.

17. What are System Calls?
System calls provide the interface between a process and the Operating system. System Calls are also called as Monitor call or Operating-system function call. When a system call is executed, it is treated as by the hardware as software interrupt. Control passes through the interrupt vector to a service routine in the operating system, and the mode bit is set to monitor mode.

18. What is meant by soft real time system?
It provides priority to the tasks based on their criticality. It does not guarantee completion of critical tasks in time.

19. What is meant by distributed systems?
A distributed system is basically a collection of autonomous computer systems which cooperate with one another through their h/w and s/w interconnections.

20. What is meant by Asymmetric Clustering?
In this clustering, one machine is in hot standby mode, while the other is running the application. The hot standby machine just monitors the active server. If that server fails, hot standby host become the active server.
Part-B

1. Discuss about the evolution of Virtual machines. Also explain how virtualization could be implemented in operating systems.
2. Sketch the structure of direct memory Access in detail.
3. Explain the various types of System calls with an example for each.
4. Discuss about the functionality of system boot with respect to operating system.
5. Explain the operating system structure and its component.
6. Define operating system and list out the function and component of operating system.
7. Differentiate symmetric and asymmetric multiprocessing system.
8. In what ways is the modular kernel approach similar to the layered approaches
9. Explain the various memory hierarchies with neat block diagram

UNIT-II

PROCESS MANAGEMENT

Part-A

1. Define process?
 A process is more than a program code, which is sometime known as the text section. It also includes the current activity, as represented by the value of the program counter and the processor’s registers.

2. What is meant by the state of the process?
 The state of the process is defined in part by the current activity of that process. Each process may be in one of the following states.
 - New: The process is being created.
 - Running: Instruction are being executed
 - Waiting: The process is waiting for some event to occur.
 - Ready: The process is waiting to be assigned to a processor
 - Terminated: The process has finished execution

3. Define process control block contain?
 Each process is represented in the operating system by a process control block (PCB) – also called as task control block. The PCB simply serves as the repository for any information that may vary from process to process.

4. What does PCB contain?
 - Process state
 - Program counter
 - CPU registers
 - CPU scheduling information
 - Memory management information
5. **What are the 3 different types of scheduling queues?**
 - **Job Queue:** As process enters the system they are put into job queue.
 - **Ready Queue:** The processes that are residing in the main memory and are ready and waiting to execute are kept in the queue.
 - **Device Queue:** The list of processes waiting for particular I/O device is called a device queue.

6. **Define schedulers?**
 A process migrates between the various scheduling throughout its lifetime. The operating system must select, for scheduling purposes, processes from these queues in some fashion. The selection process is carried out by the appropriate scheduler.

7. **What are the types of scheduler?**
 Long term scheduler or job scheduler selects processes from the pool and load them into the memory for execution. Short term scheduler or CPU scheduler, select among the processes that are ready to execute and allocates the CPU to one of them.

8. **Define critical section?**
 If a system consist on n processes {P0, P1,……, Pn-1}. Each process has a segment of code called a critical section, in which the process may be changing common variables, updating a table, writing a file. The important feature of this system is that, when one process is in its critical section, no other process is to be allowed to execute in its critical section.

9. **What requirement is to be satisfied for a solution of a critical section problem?**
 A solution to the critical section problem must satisfy the following 3 requirements.
 - **Mutual exclusion:** If process P1 is executing in its critical section, then no other processes can be executing in their critical sections.
 - **Progress:** If no process is executing in its critical section and some processes wish to enter their critical sections, then only those processes that are not executing in their remainder section can participate in the decision on which will enter its critical section next, and this selection cannot be postponed indefinitely.
 - **Bounded waiting:** There exists a bound on the number of times that other processes are allowed to enter their critical section after a process has made a request to enter its critical section and before that request is granted.

10. **Define semaphores.**
 Semaphore is a synchronization toll. A semaphore S is an integer variable that apart from initialization is accessed only through 2 standard atomic operations.
 - **Wait**
 - **Signal**
11. **Define Starvation in deadlock?**
A problem related to deadlock is indefinite blocking or starvation, a situation where processes wait indefinitely within a semaphore. Indefinite blocking may occur if we add and remove processes from the list associated with a semaphore in LIFO order.

12. **Define deadlock?**
A process requests resources; if the resources are not available at that time, the process enters a wait state. Waiting processes may never change state, because the resources they are requested are held by other waiting processes. This situation is called deadlock.

13. **Define dome classic problem of synchronization?**
- The Bounded – Buffer Problem
- The Reader – Writer Problem
- The Dining – Philosophers Problem

14. **What is the sequence of operation by which a process utilizes a resource?**
Under the normal mode of operation, a process may utilize a resource in only the following sequence:
- Request: If the request cannot be granted immediately, then the requesting process must wait until it can acquire the response.
- Use: The process can operate on the resource.
- Release: The process releases the resource

15. **Give the condition necessary for a deadlock situation to arise?**
A deadlock situation can arise if the following 4 condition hold simultaneously in a system.
- Mutual Exclusion
- Hold and Wait
- No preemption
- Circular Wait

16. **What is the use of cooperating processes?**
- Information sharing: Since several users may be interested in the same piece of information, we must provide an environment to allow concurrent access to these type of resources.
- Computation speedup: If we want a particular task to run faster, we must break it into subtask, each of which executing in parallel with others.
- Modularity: We may want to construct the system in a modular fashion, dividing the system functions into separate processes or thread.
• Convenience: Even an individual user may have many tasks on which to work at one time. For instance a user is editing, printing and computing in parallel.

17. Define deadlock-avoidance algorithm?
 A deadlock-avoidance algorithm dynamically examines the resource allocation state to ensure that a circular wait condition can never exist. The resource allocation state is defined by the number of available and allocated resources, and the maximum demand of the processes.

18. What are the benefits of multithreaded programming?
 • Responsiveness
 • Resource sharing
 • Economy
 • Utilization of multiprocessor architecture

19. Define deadlock detection diction?
 If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock situation may occur. In this environment, the system must provide:
 • An algorithm that examines the state of the system to determine whether a deadlock has occurred
 • An algorithm to recover from the deadlock.

20. Define race condition.
 When several process access and manipulate same data concurrently, then the outcome of the execution depends on particular order in which the access takes place is called race condition. To avoid race condition, only one process at a time can manipulate the shared variable.

Part-B

1. What is the important feature of critical section? State the dining philosopher’s problem and show how to allocate the several resources among several processes in a deadlock and starvation free manner.
2. How can deadlock be detected? Explain.
3. Write about the various CPU scheduling algorithms.
4. Write notes about multiple-processor scheduling and real-time scheduling.
5. Write about critical regions and monitors.
6. Consider the following five processes, with the length of the CPU burst time given in milliseconds. Process Burst time
 P1 10
 P2 29
 P3 3
 P4 7
P5 12
Consider the First come First serve (FCFS), Non Preemptive Shortest Job First(SJF), Round Robin(RR) (quantum=10ms) scheduling algorithms. Illustrate the scheduling using Gantt chart. Which algorithm will give the minimum average waiting time? Discuss.

7. Consider the following page reference string
 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1
 How many page faults would occur for the following replacement algorithms, assuming three frames that all frames are initially empty?

8. i) Construct a Resource Allocation Graph for the following scenario. At time ’t’ Process P1 request for a resource X, process P2 requests for a resource Y. Both the resources are Available and they are allocated to the requesting process. At time t1 where t1>t2 both the processes are still holding the resources, however process P1 request for Y which is held by P2, process P2 request for X held by P1. Will there be a deadlock? if there is a deadlock discuss the four necessary conditions for deadlock, else justify there is no deadlock .
 ii) With relevant example show that the implementation of a semaphore with a waiting queue may result in deadlock.

9. Discuss about the issues to be considered with multithreaded programs.

10. Write about the three common types of threading implementation.

11. Explain the two solutions of recovery from deadlock.

UNIT-III
STORAGE MANAGEMENT
Part-A

1. Define Dynamic Loading.
 To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory and executed. If the routine needs another routine, the calling routine checks whether the routine has been loaded. If not, the relocatable linking loader is called to load the desired program into memory.

2. Define Dynamic Linking.
 Dynamic linking is similar to dynamic loading, rather that loading being postponed until execution time, linking is postponed. This feature is usually used with system libraries, such as language subroutine libraries. A stub is included in the image for each library-routine reference. The stub is a small piece of code that indicates how to locate the appropriate memory-resident library routine, or how to load the library if the routine is not already present.

3. What are Overlays?
To enable a process to be larger than the amount of memory allocated to it, overlays are used. The idea of overlays is to keep in memory only those instructions and data that are needed at a given time. When other instructions are needed, they are loaded into space occupied previously by instructions that are no longer needed.

4. Define Swapping.
 A process needs to be in memory to be executed. However a process can be swapped temporarily out of memory to a backing store and then brought back into memory for continued execution. This process is called swapping.

5. What do you mean by Best Fit?
 Best fit allocates the smallest hole that is big enough. The entire list has to be searched, unless it is sorted by size. This strategy produces the smallest leftover hole.

6. What do you mean by First Fit?
 First fit allocates the first hole that is big enough. Searching can either start at the beginning of the set of holes or where the previous first-fit search ended. Searching can be stopped as soon as a free hole that is big enough is found.

7. How is memory protected in a paged environment?
 Protection bits that are associated with each frame accomplish memory protection in a paged environment. The protection bits can be checked to verify that no writes are being made to a read-only page.

8. What is External Fragmentation?
 External fragmentation exists when enough total memory space exists to satisfy a request, but it is not contiguous; storage is fragmented into a large number of small holes.

9. What is Internal Fragmentation?
 When the allocated memory may be slightly larger than the requested memory, the difference between these two numbers is internal fragmentation.

10. What do you mean by Compaction?
 Compaction is a solution to external fragmentation. The memory contents are shuffled to place all free memory together in one large block. It is possible only if relocation is dynamic, and is done at execution time.

11. What are Pages and Frames?
 Paging is a memory management scheme that permits the physical address space of a process to be non-contiguous. In the case of paging, physical memory is
broken into fixed-sized blocks called frames and logical memory is broken into blocks of the same size called pages.

12. **What is the use of Valid-Invalid Bits in Paging?**
 When the bit is set to valid, this value indicates that the associated page is in the process’s logical address space, and is thus a legal page. If the bit is said to invalid, this value indicates that the page is not in the process’s logical address space. Using the valid-invalid bit traps illegal addresses.

13. **What is the basic method of Segmentation?**
 Segmentation is a memory management scheme that supports the user view of memory. A logical address space is a collection of segments. The logical address consists of segment number and offset. If the offset is legal, it is added to the segment base to produce the address in physical memory of the desired byte.

14. **A Program containing relocatable code was created, assuming it would be loaded at address 0. In its code, the program refers to the following addresses: 50,78,150,152,154. If the program is loaded into memory starting at location 250, how do those addresses have to be adjusted?**
 All addresses need to be adjusted upward by 250. So the adjusted addresses would be 300, 328, 400, 402, and 404.

15. **What is Virtual Memory?**
 Virtual memory is a technique that allows the execution of processes that may not be completely in memory. It is the separation of user logical memory from physical memory. This separation provides an extremely large virtual memory, when only a smaller physical memory is available.

16. **What is Demand Paging?**
 Virtual memory is commonly implemented by demand paging. In demand paging, the pager brings only those necessary pages into memory instead of swapping in a whole process. Thus it avoids reading into memory pages that will not be used anyway, decreasing the swap time and the amount of physical memory needed.

17. **Define Lazy Swapper.**
 Rather than swapping the entire process into main memory, a lazy swapper is used. A lazy swapper never swaps a page into memory unless that page will be needed.

18. **What is a Pure Demand Paging?**
 When starting execution of a process with no pages in memory, the operating system sets the instruction pointer to the first instruction of the process,
which is on a non-memory resident page, the process immediately faults for the page. After this page is brought into memory, the process continues to execute, faulting as necessary until every page that it needs is in memory. At that point, it can execute with no more faults. This schema is pure demand paging.

Let p be the probability of a page fault close to 0; that is, there will be only a few page faults. The effective access time is, Effective access time = (1-p)*ma+p*page fault time ma: memory access time

20. Define Secondary Memory.

This memory holds those pages that are not present in main memory. The secondary memory is usually a high speed disk. It is known as the swap device, and the section of the disk used for this purpose is known as swap space.

Part-B

1. Differentiate local and global page replacement algorithm.
2. What is virtual memory? Mention its advantages.
3. What is the maximum file size supported by a file system with 16 direct blocks, single, double, and triple indirection? The block size is 512 bytes. Disk block number can be stored in 4 bytes.
4. List the steps needed to perform page replacement.
5. Differentiate external fragmentation with internal fragmentation.
6. Briefly explain and compare, fixed and dynamic memory partitioning schemes.
7. Explain with the help of examples FIFO and LRU, optical page replacement algorithms with example reference string. Mention the merits and demerits of each of the above algorithm.
8. Explain how paging supports virtual memory. With neat diagram explain how logical address is translated into physical address.
9. Explain memory management in Linux operating system.
10. Give the basic concepts about paging.
11. Write about the techniques for structuring the page table.
12. Explain the basic concepts of segmentation.
13. What is demand paging and what is its use?
14. Explain the various page replacement strategies.
15. What is thrashing and explain the methods to avoid thrashing?
16. Write short notes on swapping.
17. Discuss the advantages of paging memory management and the conversion of logical address into physical address with necessary
18. Consider the following page reference string: 2, 3, 4, 2, 1, 5, 6, 4, 1, 2, 3, 7, 6, 3, 2, 1 Calculate the number of page faults would occur for the following page replacement algorithm with frame size of 4 and 5.
19. Explain the page fault handling routine with diagram.
20. Explain Contiguous and Non contiguous memory allocation with example.

UNIT-IV
I/O SYSTEMS
Part-A

1. What is a File?
 A file is a named collection of related information that is recorded on secondary storage. A file contains either programs or data. A file has certain “structure” based on its type.
 - File attributes: Name, identifier, type, size, location, protection, time, date
 - File operations: creation, reading, writing, repositioning, deleting, truncating, appending, renaming
 - File types: executable, object, library, source code etc.

2. List the various File Attributes.
 A file has certain other attributes, which vary from one operating system to another, but typically consist of these: Name, identifier, type, location, size, protection, time, date and user identification.

3. What are the various File Operations?
 The basic file operations are,
 - Creating a file
 - Writing a file
 - Reading a file
 - Repositioning within a file
 - Deleting a file
 - Truncating a file

4. What is the information associated with an Open File?
 Several pieces of information are associated with an open file which may be:
 - File pointer
 - File open count
 - Disk location of the file
 - Access rights

5. What are the different Accessing Methods of a File?
 The different types of accessing a file are:
 - Sequential access: Information in the file is accessed sequentially
 - Direct access: Information in the file can be accessed without any particular order.
6. What is Directory?
The device directory or simply known as directory records information—such as name, location, size, and type for all files on that particular partition. The directory can be viewed as a symbol table that translates file names into their directory entries.

7. What are the operations that can be performed on a Directory?
The operations that can be performed on a directory are,
- Search for a file
- Create a file
- Delete a file
- Rename a file
- List directory
- Traverse the file system

8. What are the most common schemes for defining the Logical Structure of a Directory?
The most common schemes for defining the logical structure of a directory
- Single-Level Directory
- Two-level Directory
- Tree-Structured Directories
- Acyclic-Graph Directories
- General Graph Directory

9. Define UFD and MFD.
In the two-level directory structure, each user has own user file directory. Each UFD has a similar structure, but lists only the files of a single user. When a job starts the system’s master file directory.

10. What is a Path Name?
A pathname is the path from the root through all subdirectories to a specified file. In a two-level directory structure a user name and a file name define a path name.

11. What is Access Control List?
The most general scheme to implement identity-dependent access is to associate with each file and directory an access control unit.

The way to split \(m \) frames among \(n \) processes is to give everyone an equal share, \(m/n \) frames. For instance, if there are 93 frames and 5 processes, each process will get 18 frames. The leftover 3 frames could be used as a free-frame buffer pool. This scheme is called equal allocation.

13. **What is the cause of Thrashing? How does the system detect thrashing? Once it detects thrashing, what can the system do to eliminate this problem?**

Thrashing is caused by under allocation of the minimum number of pages required by a process, forcing it to continuously page fault. The system can detect thrashing by evaluating the level of CPU utilization as compared to the level of multiprogramming. It can be eliminated by reducing the level of multiprogramming.

14. **If the average page faults service time of 25 ms and a memory access time of 100ns. Calculate the effective access time.**

\[
\text{Effective access time} = (1-p) \times \text{ma} + p \times \text{page fault time} \\
= (1-p) \times 100 + p \times 25000000 \\
= 100 - 100p + 25000000p \\
= 100 + 24999900p
\]

15. **What is Belady’s Anomaly?**

For some page replacement algorithms, the page fault rate may increase as the number of allocated frames increases.

16. **What are the types of Path Names?**

Path names can be of two types.
- **Absolute path name**: Begins at the root and follows a path down to the specified file, giving the directory names on the path.
- **Relative path name**: Defines a path from the current directory.

17. **What is meant by Locality of Reference?**

The locality model states that, as a process executes, it moves from locality to locality. Locality is of two types.
- Spatial locality
- Temporal locality.

18. **Define Seek Time and Latency Time.**

The time taken by the head to move to the appropriate cylinder or track is called seek time. Once the head is at right track, it must wait until the desired block rotates under the read-write head. This delay is latency time.

19. **What are the Allocation Methods of a Disk Space?**
Three major methods of allocating disk space which are widely in use are
- Contiguous allocation
- Linked allocation
- Indexed allocation

20. What are the advantages of Contiguous Allocation?
The advantages are,
- Supports direct access
- Supports sequential access
- Number of disk seeks is minimal.

Part-B
1. Write briefly about file attributes, operations, types and structure.
2. Discuss in detail about file allocation methods. What are the possible structures for directory? Discuss them in detail.
3. Explain about disk scheduling and any of its two algorithms with suitable example.
4. Explain the following:
 a. RAID
 b. I/O in Linux
5. Write a detailed note on various file access methods with neat sketch.
6. Explain in detail about free space management with neat diagram.
7. a. Describe the two levels and tree type directory structures in detail.
 b. Describe the life cycle of an I/O request in detail.
8. a. Describe the Windows XP file system in detail.
 b. Explain the directory structure of Linux operating system.
9. a. Describe how the disk space from deleted files can be reused.
 b. Explain in detail the process management and file system in LINUX system.

UNIT-V
CASE STUDY
Part-A
1. What is meant by Data Striping?
 Data Stripping means splitting the bits of each byte across multiple disks. It is also called as Bit–level Striping.

2. What is meant by Boot Disk?
 A Disk that has a boot partition is called as Boot Disk.

3. What are the Components of a Linux System?
 Linux System composed of three main modules. They are:
 (i). Kernel
 (ii). System libraries
(iii). System utilities

4. **What are the main supports for the Linux modules?**
 The Module support under Linux has three components. They are:
 (i). Module Management
 (ii). Driver Registration.
 (iii). Conflict Resolution mechanism.

5. **What is meant by Process?**
 A Process is the basic context within which all user-requested activity is serviced within the Operating system.

6. **What is meant by Process - ID?**
 Each process has a unique identifier. PID’s are used to specify processes to the operating system when an application makes a system call to signal, modify or wait for another process.

7. **What is meant by Personality?**
 Process Personalities are primarily used by emulation libraries to request that system call be compatible with certain versions of UNIX.

8. **What is meant by Buffer cache?**
 It is the kernel's main cache for block-oriented devices such as disk drives and is the main mechanism through which I/O to these devices is performed.

9. **What is the Disadvantage of Static Linking?**
 The main disadvantage of static linking is that every program generated must contain copies of exactly the same common system library functions.

10. **What is meant by Kernel in Linux system?**
 Kernel is responsible for maintaining all the important abstractions of the operating system including such things as virtual memory and processes.

11. **What is meant by System Libraries?**
 System Libraries define a standard set of functions through which applications can interact with the kernel and that implement much of the operating-system functionality that doesn’t need the full privileges of kernel code.

12. **What is meant by System Utilities?**
 System Utilities are system programs that perform individual, specialized management tasks. Some of the System utilities may be invoked just to initialize and configure some aspect of the system and others may run permanently,
handling such tasks as responding to incoming network connections, accepting logon requests from terminals or updating log files.

13. What is the function of Module management?
 The module management allows modules to be loaded into memory and to talk to the rest of the kernel.

14. What is the function of Driver registration?
 Driver Registration allows modules to tell the rest of the kernel that a new driver has become available.

15. What is the function of Conflict Resolution mechanism?
 This mechanism allows different device drivers to reserve hardware resources and to protect those resources from accidental use by another driver.

16. What is meant by Device drivers?
 Device drivers include
 (i) Character devices such as printers, terminals
 (ii) Block devices including all disk drives) and network interface devices.

Part-B

1. Explain in detail the design principles, kernel modules, process management, scheduling in LINUX system.
2. Explain in detail the memory management in LINUX system.
3. Explain in detail the file system in LINUX system.
4. Explain in detail about I/O in LINUX system.
5. Describe about the network structure of LINUX system.
6. Explain in detail about the system administration of LINUX system and the requirements for LINUX system administrator.
7. Explain in detail about setting up a LINUX multifunction server.
8. What is virtualization? Explain its concepts in detail.
9. Illustrate the procedure for setting XEN on LINUX host and adding guest OS.
10. Give the procedure for setting VMware on LINUX host and adding guest OS.